article

:

“P/NP, and the quantum field computer,”

Proc. Natl. Acad. Sci. USA

95 : 1

(1998),

pp. 98–101.

MR

1612425

Zbl

0895.68053

incollection

:

“Topological views on computational complexity,”

pp. 453–464

in

Proceedings of the International Congress of Mathematicians

(Berlin, 1998),

published as Doc. Math.

Extra II.

Fakultät für Mathematik, Universität Bielefeld (Bielefeld),

1998.

MR

1648095

Zbl

0967.68520

incollection

:

“__( K )__-sat on groups and undecidability,”

pp. 572–576

in

Proceedings of the thirtieth annual ACM symposium on theory of computing

(Dallas, TX, May 23–26, 1998).

Edited by Association for Computing Machinery.

Association for Computing Machinery (New York),

1998.

MR

1715605

Zbl

1028.68068

article

:

“Projective plane and planar quantum codes,”

Found. Comput. Math.

1 : 3

(2001),

pp. 325–332.

MR

1838758

Zbl

0995.94037

ArXiv

quant-ph/9810055

article

:

“Quantum computation and the localization of modular functors,”

Found. Comput. Math.

1 : 2

(2001),

pp. 183–204.

MR

1830035

Zbl

1004.57026

ArXiv

quant-ph/0003128

article

:

“The two-eigenvalue problem and density of Jones representation of braid groups,”

Comm. Math. Phys.

228 : 1

(2002),

pp. 177–199.

MR

1911253

Zbl

1045.20027

article

:

“A modular functor which is universal for quantum computation,”

Comm. Math. Phys.

227 : 3

(2002),

pp. 605–622.

MR

1910833

Zbl

1012.81007

ArXiv

quant-ph/0001108

article

:

“Simulation of topological field theories by quantum computers,”

Comm. Math. Phys.

227 : 3

(2002),

pp. 587–603.

MR

1910832

Zbl

1014.81006

ArXiv

quant-ph/0001071

article

:

“Poly-locality in quantum computing,”

Found. Comput. Math.

2 : 2

(2002),

pp. 145–154.

MR

1894373

Zbl

1075.81507

ArXiv

quant-ph/0001077

incollection

:

“__( Z_2 )__-systolic freedom and quantum codes,”

pp. 287–320

in

Mathematics of quantum computation.

Edited by R. K. Brylinski and G. Chen.

Computational Mathematics 3.

Chapman & Hall/CRC (Boca Raton, FL),

2002.

MR

2007952

Zbl

1075.81508

article

:

“A magnetic model with a possible Chern–Simons phase,”

Comm. Math. Phys.

234 : 1

(2003),

pp. 129–183.

With an appendix by F. Goodman and H. Wenzl.

MR

1961959

Zbl

1060.81054

ArXiv

quant-ph/0110060

article

:

“Topological quantum computation,”

Bull. Amer. Math. Soc. (N.S.)

40 : 1

(2003),

pp. 31–38.

MR

1943131

Zbl

1019.81008

ArXiv

quant-ph/0101025

techreport

:

Non-Abelian topological phases in an extended Hubbard model.

Preprint,

September 2003.

ArXiv

cond-mat/0309120

article

:

“A class of __( P,T )__-invariant topological phases of interacting electrons,”

Ann. Physics

310 : 2

(2004),

pp. 428–492.

MR

2044743

Zbl

1057.81053

article

:

“Approximate counting and quantum computation,”

Combin. Probab. Comput.

14 : 5–6

(2005),

pp. 737–754.

MR

2174653

Zbl

1089.68040

“Line of critical points in ( 2+1 ) dimensions: Quantum critical loop gases and non-abelian gauge theory,”

Phys. Rev. Lett.

94 : 14

(2005),

pp. 147205. :

article

:

“Topologically-protected qubits from a possible non-abelian fractional quantum Hall state,”

Phys. Rev. Lett.

94 : 6

(2005),

pp. 166802.

ArXiv

cond-mat/0412343

“An extended Hubbard model with ring exchange: A route to a non-abelian topological phase,”

Phys. Rev. Lett.

94 : 6

(2005),

pp. 066401. :

techreport

:

Tilted interferometry realizes universal quantum computation in the Ising TQFT without overpasses.

Preprint,

December 2005.

ArXiv

cond-mat/0512072

“Towards universal topological quantum computation in the ( nu=5/2 ) fractional quantum Hall state,”

Phys. Rev. B

73 : 24

(2006),

pp. 245307. :

“Topological quantum computation,”

Physics Today

59 : 7

(July 2006),

pp. 32–38. :

article

:

“Topological quantum computing with only one mobile quasiparticle,”

Phys. Rev. Lett.

96 : 7

(2006),

pp. 070503.

MR

2205654

ArXiv

quant-ph/0509175

article

:

“Interacting anyons in topological quantum liquids: The golden chain,”

Phys. Rev. Lett.

98

(2007),

pp. 160409.

ArXiv

cond-mat/0612341

article

:

“Large quantum Fourier transforms are never exactly realized by braiding conformal blocks,”

Phys. Rev. A (3)

75 : 3

(2007),

pp. 032322.

MR

2312110

ArXiv

cond-mat/0609411

article

:

“Measurement-only topological quantum computation,”

Phys. Rev. Lett.

101 : 1

(2008),

pp. 010501.

MR

2429542

Zbl

1228.81121

ArXiv

0802.0279

article

:

“Non-abelian anyons and topological quantum computation,”

Rev. Modern Phys.

80 : 3

(2008),

pp. 1083–1159.

MR

2443722

Zbl

1205.81062

ArXiv

0707.1889

“Lieb–Schultz–Mattis theorem for quasitopological systems,”

Phys. Rev. B

78

(2008),

pp. 174411. :

incollection

:

“On picture __( (2+1) )__-TQFTs,”

pp. 19–106

in

Topology and physics

(Tianjin, China, 27–31 July 2007).

Edited by K. Lin, Z. Weng, and W. Zhang.

Nankai Tracts in Mathematics 12.

World Scientific (Hackensack, NJ),

2008.

MR

2503392

Zbl

1168.81024

ArXiv

0806.1926

techreport

:

A topological phase in a quantum gravity model.

Preprint,

December 2008.

A talk at Solvay conference, October 2008.

ArXiv

0812.2278

article

:

“Measurement-only topological quantum computation via anyonic interferometry,”

Ann. Physics

324 : 4

(2009),

pp. 787–826.

MR

2508474

Zbl

1171.81004

ArXiv

0808.1933

article

:

“From string nets to nonabelions,”

Comm. Math. Phys.

287 : 3

(2009),

pp. 805–827.

MR

2486662

Zbl

1196.82072

ArXiv

cond-mat/0610583

techreport

:

A blueprint for a topologically fault-tolerant quantum computer.

Preprint,

March 2010.

ArXiv

1003.2856

article

:

“Topological phases: An expedition off lattice,”

Ann. Physics

326 : 8

(2011),

pp. 2108–2137.

MR

2812881

Zbl

1221.81219

ArXiv

1102.0270

techreport

:

3D non-abelian anyons: Degeneracy splitting and detection by adiabatic cooling.

Preprint,

February 2011.

ArXiv

1102.5742

article

:

“Projective ribbon permutation statistics: A remnant of non-Abelian braiding in higher dimensions,”

Phys. Rev. B

83 : 11

(2011),

pp. 115132.

ArXiv

1005.0583

This is a syndicated post. Read the original post at Source link .