/Celebratio Mathematica — Freedman — Quantum Computing (via Qpute.com)

Celebratio Mathematica — Freedman — Quantum Computing (via Qpute.com)



article
M. H. Freed­man:
P/NP, and the quantum field com­puter,”
Proc. Natl. Acad. Sci. USA
95 : 1
(1998),
pp. 98–​101.
MR
1612425

Zbl
0895.​68053


incollection
M. H. Freed­man:
To­po­lo­gic­al views on com­pu­ta­tion­al com­plex­ity,”
pp. 453–​464
in
Pro­ceed­ings of the In­ter­na­tion­al Con­gress of Math­em­aticians
(Ber­lin, 1998),
published as Doc. Math.
Ex­tra II.
Fak­ultät für Math­em­atik, Uni­versität Biele­feld (Biele­feld),
1998.
MR
1648095

Zbl
0967.​68520


incollection
M. H. Freed­man:
( K )-sat on groups and un­de­cid­ab­il­ity,”
pp. 572–​576
in
Pro­ceed­ings of the thir­ti­eth an­nu­al ACM sym­posi­um on the­ory of com­put­ing
(Dal­las, TX, May 23–26, 1998).
Edi­ted by Association for Computing Machinery.
As­so­ci­ation for Com­put­ing Ma­chinery (New York),
1998.
MR
1715605

Zbl
1028.​68068


article
M. H. Freed­man and D. A. Mey­er:
Pro­ject­ive plane and planar quantum codes,”
Found. Com­put. Math.
1 : 3
(2001),
pp. 325–​332.
MR
1838758

Zbl
0995.​94037

ArXiv
quant-​ph/​9810055


article
M. H. Freed­man:
Quantum com­pu­ta­tion and the loc­al­iz­a­tion of mod­u­lar func­tors,”
Found. Com­put. Math.
1 : 2
(2001),
pp. 183–​204.
MR
1830035

Zbl
1004.​57026

ArXiv
quant-​ph/​0003128


article
M. H. Freed­man, M. J. Larsen, and Z. Wang:
The two-ei­gen­value prob­lem and dens­ity of Jones rep­res­ent­a­tion of braid groups,”
Comm. Math. Phys.
228 : 1
(2002),
pp. 177–​199.
MR
1911253

Zbl
1045.​20027


article
M. H. Freed­man, M. Larsen, and Z. Wang:
A mod­u­lar func­tor which is uni­ver­sal for quantum com­pu­ta­tion,”
Comm. Math. Phys.
227 : 3
(2002),
pp. 605–​622.
MR
1910833

Zbl
1012.​81007

ArXiv
quant-​ph/​0001108


article
M. H. Freed­man, A. Kit­aev, and Z. Wang:
Sim­u­la­tion of to­po­lo­gic­al field the­or­ies by quantum com­puters,”
Comm. Math. Phys.
227 : 3
(2002),
pp. 587–​603.
MR
1910832

Zbl
1014.​81006

ArXiv
quant-​ph/​0001071


article
M. H. Freed­man:
Poly-loc­al­ity in quantum com­put­ing,”
Found. Com­put. Math.
2 : 2
(2002),
pp. 145–​154.
MR
1894373

Zbl
1075.​81507

ArXiv
quant-​ph/​0001077


incollection
M. H. Freed­man, D. A. Mey­er, and F. Luo:
( Z_2 )-systol­ic free­dom and quantum codes,”
pp. 287–​320
in
Math­em­at­ics of quantum com­pu­ta­tion.
Edi­ted by R. K. Bryl­in­ski and G. Chen.
Com­pu­ta­tion­al Math­em­at­ics 3.
Chap­man & Hall/CRC (Boca Raton, FL),
2002.
MR
2007952

Zbl
1075.​81508


article
M. H. Freed­man:
A mag­net­ic mod­el with a pos­sible Chern–Si­mons phase,”
Comm. Math. Phys.
234 : 1
(2003),
pp. 129–​183.
With an ap­pendix by F. Good­man and H. Wen­zl.
MR
1961959

Zbl
1060.​81054

ArXiv
quant-​ph/​0110060


article
M. H. Freed­man, A. Kit­aev, M. J. Larsen, and Z. Wang:
To­po­lo­gic­al quantum com­pu­ta­tion,”
Bull. Amer. Math. Soc. (N.S.)
40 : 1
(2003),
pp. 31–​38.
MR
1943131

Zbl
1019.​81008

ArXiv
quant-​ph/​0101025


techreport
M. H. Freed­man, C. Nayak, and K. Shten­gel:
Non-Abeli­an to­po­lo­gic­al phases in an ex­ten­ded Hub­bard mod­el.
Pre­print,
September 2003.
ArXiv
cond-​mat/​0309120


article
M. Freed­man, C. Nayak, K. Shten­gel, K. Walk­er, and Z. Wang:
A class of ( P,T )-in­vari­ant to­po­lo­gic­al phases of in­ter­act­ing elec­trons,”
Ann. Phys­ics
310 : 2
(2004),
pp. 428–​492.
MR
2044743

Zbl
1057.​81053


article
M. Bor­dewich, M. Freed­man, L. Lovász, and D. Welsh:
Ap­prox­im­ate count­ing and quantum com­pu­ta­tion,”
Com­bin. Probab. Com­put.
14 : 5–​6
(2005),
pp. 737–​754.
MR
2174653

Zbl
1089.​68040

M. H. Freed­man, C. Nayak, and K. Shten­gel:
Line of crit­ic­al points in ( 2+1 ) di­men­sions: Quantum crit­ic­al loop gases and non-abeli­an gauge the­ory,”
Phys. Rev. Lett.
94 : 14
(2005),
pp. 147205.


article
D. Das Sarma, M. H. Freed­man, and C. Nayak:
To­po­lo­gic­ally-pro­tec­ted qubits from a pos­sible non-abeli­an frac­tion­al quantum Hall state,”
Phys. Rev. Lett.
94 : 6
(2005),
pp. 166802.
ArXiv
cond-​mat/​0412343

M. Freed­man, C. Nayak, and K. Shten­gel:
An ex­ten­ded Hub­bard mod­el with ring ex­change: A route to a non-abeli­an to­po­lo­gic­al phase,”
Phys. Rev. Lett.
94 : 6
(2005),
pp. 066401.


techreport
M. Freed­man, C. Nayak, and K. Walk­er:
Tilted in­ter­fer­o­metry real­izes uni­ver­sal quantum com­pu­ta­tion in the Ising TQFT without over­passes.
Pre­print,
December 2005.
ArXiv
cond-​mat/​0512072

M. Freed­man, C. Nayak, and K. Walk­er:
To­wards uni­ver­sal to­po­lo­gic­al quantum com­pu­ta­tion in the ( nu=5/2 ) frac­tion­al quantum Hall state,”
Phys. Rev. B
73 : 24
(2006),
pp. 245307.

M. Freed­man, S. Das Sarma, and C. Nayak:
To­po­lo­gic­al quantum com­pu­ta­tion,”
Phys­ics Today
59 : 7
(July 2006),
pp. 32–​38.


article
S. H. Si­mon, N. E. Bonesteel, M. H. Freed­man, N. Pet­ro­vic, and L. Hor­mozi:
To­po­lo­gic­al quantum com­put­ing with only one mo­bile qua­si­particle,”
Phys. Rev. Lett.
96 : 7
(2006),
pp. 070503.
MR
2205654

ArXiv
quant-​ph/​0509175


article
M. Freed­man, A. Feiguin, S. Trebst, A. Lud­wig, M. Troy­er, A. Kit­aev, and Z. Wang:
In­ter­act­ing any­ons in to­po­lo­gic­al quantum li­quids: The golden chain,”
Phys. Rev. Lett.
98
(2007),
pp. 160409.
ArXiv
cond-​mat/​0612341


article
M. H. Freed­man and Z. Wang:
Large quantum Four­i­er trans­forms are nev­er ex­actly real­ized by braid­ing con­form­al blocks,”
Phys. Rev. A (3)
75 : 3
(2007),
pp. 032322.
MR
2312110

ArXiv
cond-​mat/​0609411


article
P. Bon­der­son, M. Freed­man, and C. Nayak:
Meas­ure­ment-only to­po­lo­gic­al quantum com­pu­ta­tion,”
Phys. Rev. Lett.
101 : 1
(2008),
pp. 010501.
MR
2429542

Zbl
1228.​81121

ArXiv
0802.​0279


article
C. Nayak, S. H. Si­mon, A. Stern, M. Freed­man, and S. Das Sarma:
Non-abeli­an any­ons and to­po­lo­gic­al quantum com­pu­ta­tion,”
Rev. Mod­ern Phys.
80 : 3
(2008),
pp. 1083–​1159.
MR
2443722

Zbl
1205.​81062

ArXiv
0707.​1889

M. Freed­man, C. Nayak, and K. Shten­gel:
Lieb–Schultz–Mat­tis the­or­em for qua­s­ito­po­lo­gic­al sys­tems,”
Phys. Rev. B
78
(2008),
pp. 174411.


incollection
M. Freed­man, C. Nayak, K. Walk­er, and Z. Wang:
On pic­ture ( (2+1) )-TQFTs,”
pp. 19–​106
in
To­po­logy and phys­ics
(Tianjin, China, 27–31 Ju­ly 2007).
Edi­ted by K. Lin, Z. Weng, and W. Zhang.
Nankai Tracts in Math­em­at­ics 12.
World Sci­entif­ic (Hack­en­sack, NJ),
2008.
MR
2503392

Zbl
1168.​81024

ArXiv
0806.​1926


techreport
M. H. Freed­man:
A to­po­lo­gic­al phase in a quantum grav­ity mod­el.
Pre­print,
December 2008.
A talk at Solvay con­fer­ence, Oc­to­ber 2008.
ArXiv
0812.​2278


article
P. Bon­der­son, M. Freed­man, and C. Nayak:
Meas­ure­ment-only to­po­lo­gic­al quantum com­pu­ta­tion via any­on­ic in­ter­fer­o­metry,”
Ann. Phys­ics
324 : 4
(2009),
pp. 787–​826.
MR
2508474

Zbl
1171.​81004

ArXiv
0808.​1933


article
L. Fidkowski, M. Freed­man, C. Nayak, K. Walk­er, and Z. Wang:
From string nets to nona­beli­ons,”
Comm. Math. Phys.
287 : 3
(2009),
pp. 805–​827.
MR
2486662

Zbl
1196.​82072

ArXiv
cond-​mat/​0610583


techreport
P. Bon­der­son, S. Das Sarma, M. Freed­man, and C. Nayak:
A blue­print for a to­po­lo­gic­ally fault-tol­er­ant quantum com­puter.
Pre­print,
March 2010.
ArXiv
1003.​2856


article
M. H. Freed­man, L. Gamper, C. Gils, S. V. Isakov, S. Trebst, and M. Troy­er:
To­po­lo­gic­al phases: An ex­ped­i­tion off lat­tice,”
Ann. Phys­ics
326 : 8
(2011),
pp. 2108–​2137.
MR
2812881

Zbl
1221.​81219

ArXiv
1102.​0270


techreport
S. J. Yamamoto, M. Freed­man, and K. Yang:
3D non-abeli­an any­ons: De­gen­er­acy split­ting and de­tec­tion by adia­bat­ic cool­ing.
Pre­print,
February 2011.
ArXiv
1102.​5742


article
M. Freed­man, M. B. Hast­ings, C. Nayak, X.-L. Qi, K. Walk­er, and Z. Wang:
Pro­ject­ive rib­bon per­muta­tion stat­ist­ics: A rem­nant of non-Abeli­an braid­ing in high­er di­men­sions,”
Phys. Rev. B
83 : 11
(2011),
pp. 115132.
ArXiv
1005.​0583


This is a syndicated post. Read the original post at Source link .