/Experimental demonstration of memory-enhanced quantum communication (via Qpute.com)

Experimental demonstration of memory-enhanced quantum communication (via Qpute.com)


  • 1.

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

  • 2.

    Bennett, C. H. & Brassard, G. Quantum cryptography: public key distribution and coin tossing. In Proc. Int. Conf. on Computers, Systems and Signal Processing Vol. 1, 175–179 (IEEE Computer Society, IEEE Circuits and Systems Society, Indian Institute of Science, 1984).

  • 3.

    Shor, P. W. & Preskill, J. Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441–444 (2000).

  • 4.

    Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

  • 5.

    Boaron, A. et al. Secure quantum key distribution over 421 km of optical fiber. Phys. Rev. Lett. 121, 190502 (2018).

  • 6.

    Zhang, Q., Xu, F., Chen, Y.-A., Peng, C.-Z. & Pan, J.-W. Large scale quantum key distribution: challenges and solutions. Opt. Express 26, 24260–24273 (2018).

  • 7.

    Pirandola, S. et al. Advances in quantum cryptography. Preprint at http://arxiv.org/abs/1906.01645 (2019).

  • 8.

    Pirandola, S., Laurenza, R., Ottaviani, C. & Banchi, L. Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017).

  • 9.

    Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

  • 10.

    Chou, C.-W. et al. Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316–1320 (2007).

  • 11.

    Yuan, Z.-S. et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008).

  • 12.

    Gao, W. B., Fallahi, P., Togan, E., Miguel-Sanchez, J. & Imamoglu, A. Observation of entanglement between a quantum dot spin and a single photon. Nature 491, 426–430(2012).

  • 13.

    Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015).

  • 14.

    Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

  • 15.

    Kalb, N. et al. Entanglement distillation between solid-state quantum network nodes. Science 356, 928–932 (2017).

  • 16.

    Kaneda, F., Xu, F., Chapman, J. & Kwiat, P. G. Quantum-memory-assisted multi-photon generation for efficient quantum information processing. Optica 4, 1034–1037 (2017).

  • 17.

    Evans, R. E. et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 362, 662–665 (2018).

  • 18.

    Burek, M. J. et al. Fiber-coupled diamond quantum nanophotonic interface. Phys. Rev. Appl. 8, 024026 (2017).

  • 19.

    Nguyen, C. T. et al. Quantum network nodes based on diamond qubits with an efficient nanophotonic interface. Phys. Rev. Lett. 123, 183602 (2019).

  • 20.

    Khabiboulline, E. T., Borregaard, J., De Greve, K. & Lukin, M. D. Optical interferometry with quantum networks. Phys. Rev. Lett. 123, 070504 (2019).

  • 21.

    Monroe, C. et al. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317 (2014).

  • 22.

    Lo, H.-K., Curty, M. & Qi, B. Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012).

  • 23.

    Braunstein, S. L. & Pirandola, S. Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012).

  • 24.

    Minder, M. et al. Experimental quantum key distribution beyond the repeaterless secret key capacity. Nat. Photon. 13, 334–338 (2019).

  • 25.

    Panayi, C., Razavi, M., Ma, X. & Lütkenhaus, N. Memory-assisted measurement-device-independent quantum key distribution. New J. Phys. 16, 043005 (2014).

  • 26.

    Lo, H.-K., Ma, X. & Chen, K. Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005).

  • 27.

    Lo, H.-K., Chau, H. F. & Ardehali, M. Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133–165 (2005).

  • 28.

    Curty, M. et al. Finite-key analysis for measurement-device-independent quantum key distribution. Nat. Commun. 5, 3732 (2014).

  • 29.

    Duan, L.-M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004).

  • 30.

    Biham, E., Huttner, B. & Mor, T. Quantum cryptographic network based on quantum memories. Phys. Rev. A 54, 2651–2658 (1996).

  • 31.

    Machielse, B. et al. Quantum interference of electromechanically stabilized emitters in nanophotonic devices. Phys. Rev. X 9, 031022 (2019).

  • 32.

    Raussendorf, R. & Briegel, H. J. A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001).

  • 33.

    Borregaard, J. et al. One-way quantum repeater based on near-deterministic photon-emitter interfaces. Preprint at http://arxiv.org/abs/1907.05101 (2019).

  • 34.

    Trusheim, M. E. et al. Lead-related quantum emitters in diamond. Phys. Rev. B 99, 075430 (2019).

  • 35.

    Meesala, S. et al. Strain engineering of the silicon-vacancy center in diamond. Phys. Rev. B 97, 205444 (2018).

  • 36.

    Burek, M. J. et al. High quality-factor optical nanocavities in bulk single-crystal diamond. Nat. Commun. 5, 5718 (2014).

  • 37.

    Atikian, H. A. et al. Freestanding nanostructures via reactive ion beam angled etching. APL Photon. 2, 051301 (2017).

  • 38.

    Nguyen, C. T. et al. An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond. Phys. Rev. B 100, 165428 (2019).

  • 39.

    de Riedmatten, H. et al. Tailoring photonic entanglement in high-dimensional Hilbert spaces. Phys. Rev. A 69, 050304 (2004).

  • 40.

    Sasaki, T., Yamamoto, Y. & Koashi, M. Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509, 475 (2014).


  • This is a syndicated post. Read the original post at Source link .