/Control and single-shot readout of an ion embedded in a nanophotonic cavity (via Qpute.com)

Control and single-shot readout of an ion embedded in a nanophotonic cavity (via Qpute.com)


  • 1.

    Kimble, H. J. The quantum internet. Nature 453, 1023–1030 (2008).

  • 2.

    Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for the road ahead. Science 362, eaam9288 (2018).

  • 3.

    Reiserer, A. & Rempe, G. Cavity-based quantum networks with single atoms and optical photons. Rev. Mod. Phys. 87, 1379–1418 (2015).

  • 4.

    Duan, L. M. & Monroe, C. Colloquium: quantum networks with trapped ions. Rev. Mod. Phys. 82, 1209–1224 (2010).

  • 5.

    Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum technologies with optically interfaced solid-state spins. Nat. Photon. 12, 516–527 (2018).

  • 6.

    Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

  • 7.

    Koehl, W. F., Buckley, B. B., Heremans, F. J., Calusine, G. & Awschalom, D. D. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 479, 84–87 (2011).

  • 8.

    Sun, S., Kim, H., Luo, Z., Solomon, G. S. & Waks, E. A single-photon switch and transistor enabled by a solid-state quantum memory. Science 361, 57–60 (2018).

  • 9.

    Sipahigil, A. et al. An integrated diamond nanophotonics platform for quantum-optical networks. Science 354, 847–850 (2016).

  • 10.

    Nguyen, C. T. et al. Quantum network nodes based on diamond qubits with an efficient nanophotonic interface. Phys. Rev. Lett. 123, 183602 (2019).

  • 11.

    Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

  • 12.

    Ortu, A. et al. Simultaneous coherence enhancement of optical and microwave transitions in solid-state electronic spins. Nat. Mater. 17, 671–675 (2018).

  • 13.

    Hedges, M. P., Longdell, J. J., Li, Y. & Sellars, M. J. Efficient quantum memory for light. Nature 465, 1052–1056 (2010).

  • 14.

    Williamson, L. A., Chen, Y.-H. & Longdell, J. J. Magneto-optic modulator with unit quantum efficiency. Phys. Rev. Lett. 113, 203601 (2014).

  • 15.

    Kutluer, K. et al. Time entanglement between a photon and a spin wave in a multimode solid-state quantum memory. Phys. Rev. Lett. 123, 030501 (2019).

  • 16.

    Kolesov, R. et al. Optical detection of a single rare-earth ion in a crystal. Nat. Commun. 3, 1029 (2012).

  • 17.

    Utikal, T. et al. Spectroscopic detection and state preparation of a single praseodymium ion in a crystal. Nat. Commun. 5, 3627 (2014).

  • 18.

    Zhong, T. et al. Optically addressing single rare-earth ions in a nanophotonic cavity. Phys. Rev. Lett. 121, 183603 (2018).

  • 19.

    Dibos, A. M., Raha, M., Phenicie, C. M. & Thompson, J. D. Atomic source of single photons in the telecom band. Phys. Rev. Lett. 120, 243601 (2018).

  • 20.

    Kindem, J. M. et al. Characterization of 171Yb3+:YVO4 for photonic quantum technologies. Phys. Rev. B 80, 1–10 (2018).

  • 21.

    Businger, M. et al. Optical spin-wave storage in a solid-state hybridized electron–nuclear spin ensemble. Phys. Rev. Lett. 124, 053606 (2020)

  • 22.

    Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

  • 23.

    Suter, D. & Álvarez, G. A. Colloquium: protecting quantum information against environmental noise. Rev. Mod. Phys. 88, 041001 (2016).

  • 24.

    de Lange, G., Wang, Z., Riste, S., Dobrovitski, V. V. & Hanson, R. Universal dynamical decoupling of a single solid-state spin from a spin bath. Science 330, 60–63 (2010).

  • 25.

    Klauder, J. R. & Anderson, P. W. Spectral diffusion decay in spin resonance experiments. Phys. Rev. 125, 912–932 (1961).

  • 26.

    Abobeih, M. H. et al. One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment. Nat. Commun. 9, 2552 (2018).

  • 27.

    Humphreys, P. C. et al. Deterministic delivery of remote entanglement on a quantum network. Nature 558, 268–273 (2018); correction 562, E2 (2018).

  • 28.

    Welinski, S. et al. Coherence time extension by large scale optical spin polarization in a rare-earth doped crystal. Preprint at https://arxiv.org/abs/1910.07907 (2019).

  • 29.

    Bernien, H. et al. Heralded entanglement between solid-state qubits separated by three metres. Nature 497, 86–90 (2013).

  • 30.

    Zhong, M., Ahlefeldt, R. L. & Sellars, M. J. Quantum information processing using frozen core Y3+ spins in Eu3+:Y2SiO5. New J. Phys. 21, 033019 (2019).

  • 31.

    Zhong, T. et al. Nanophotonic rare-earth quantum memory with optically controlled retrieval. Science 357, 1392–1395 (2017).

  • 32.

    Bartholomew, J. G. et al. On-chip coherent microwave-to-optical transduction mediated by ytterbium in YVO4. Preprint at http://arxiv.org/abs/1912.03671 (2019).

  • 33.

    Raha, M. et al. Optical quantum nondemolition measurement of a solid-state spin without a cycling transition. Preprint at http://arxiv.org/abs/1907.09992 (2019).

  • 34.

    Zhong, T., Rochman, J., Kindem, J. M., Miyazono, E. & Faraon, A. High quality factor nanophotonic resonators in bulk rare-earth doped crystals. Opt. Express 24, 536–544 (2016).


  • This is a syndicated post. Read the original post at Source link .