/Protecting a bosonic qubit with autonomous quantum error correction (via Qpute.com)

Protecting a bosonic qubit with autonomous quantum error correction (via Qpute.com)


  • 1.

    Lidar, D. A. & Brun, T. A. (eds) Quantum Error Correction 1st edn (Cambridge Univ. Press, 2013).

  • 2.

    Schindler, P. et al. Experimental repetitive quantum error correction. Science 332, 1059–1061 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Cramer, J. et al. Repeated quantum error correction on a continuously encoded qubit by real-time feedback. Nat. Commun. 7, 11526 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Kelly, J. et al. State preservation by repetitive error detection in a superconducting quantum circuit. Nature 519, 66–69 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Ofek, N. et al. Extending the lifetime of a quantum bit with error correction in superconducting circuits. Nature 536, 441–445 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Hu, L. et al. Quantum error correction and universal gate set operation on a binomial bosonic logical qubit. Nat. Phys. 15, 503–508 (2019).

    CAS 

    Google Scholar
     

  • 7.

    Andersen, C. K. et al. Repeated quantum error detection in a surface code. Nat. Phys. 16, 875–880 (2020).

    CAS 

    Google Scholar
     

  • 8.

    Ahn, C., Doherty, A. C. & Landahl, A. J. Continuous quantum error correction via quantum feedback control. Phys. Rev. A 65, 042301 (2002).

    ADS 

    Google Scholar
     

  • 9.

    Atalaya, J. et al. Continuous quantum error correction for evolution under time-dependent Hamiltonians. Preprint at https://arxiv.org/abs/2003.11248 (2020).

  • 10.

    Kerckhoff, J., Nurdin, H. I., Pavlichin, D. S. & Mabuchi, H. Designing quantum memories with embedded control: photonic circuits for autonomous quantum error correction. Phys. Rev. Lett. 105, 040502 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Kapit, E. Hardware-efficient and fully autonomous quantum error correction in superconducting circuits. Phys. Rev. Lett. 116, 150501 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Reiter, F., Sørensen, A. S., Zoller, P. & Muschik, C. A. Dissipative quantum error correction and application to quantum sensing with trapped ions. Nat. Commun. 8, 1822 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Albert, V. V. et al. Pair-cat codes: autonomous error-correction with low-order nonlinearity. Quant.Sci. Technol. 4, 035007 (2019).

    ADS 

    Google Scholar
     

  • 14.

    Sarovar, M. & Milburn, G. J. Continuous quantum error correction by cooling. Phys. Rev. A 72, 012306 (2005).

    ADS 

    Google Scholar
     

  • 15.

    Brune, M. et al. Observing the progressive decoherence of the “meter” in a quantum measurement. Phys. Rev. Lett. 77, 4887–4890 (1996).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Mundhada, S. et al. Experimental implementation of a Raman-assisted eight-wave mixing process. Phys. Rev. Appl. 12, 054051 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Reinhold, P. et al. Error-corrected gates on an encoded qubit. Nat. Phys. 16, 822–826 (2020).

    CAS 

    Google Scholar
     

  • 18.

    Ma, Y. et al. Error-transparent operations on a logical qubit protected by quantum error correction. Nat. Phys. 16, 827–831 (2020).

    CAS 

    Google Scholar
     

  • 19.

    Knill, E. & Laflamme, R. Theory of quantum error-correcting codes. Phys. Rev. A 55, 900–911 (1997).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 20.

    Lihm, J.-M., Noh, K. & Fischer, U. R. Implementation-independent sufficient condition of the Knill-Laflamme type for the autonomous protection of logical qudits by strong engineered dissipation. Phys. Rev. A 98, 012317 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Poyatos, J. F., Cirac, J. I. & Zoller, P. Quantum reservoir engineering with laser cooled trapped ions. Phys. Rev. Lett. 77, 4728–4731 (1996).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Krauter, H. et al. Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. Phys. Rev. Lett. 107, 080503 (2011).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Barreiro, J. T. et al. An open-system quantum simulator with trapped ions. Nature 470, 486–491 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Kienzler, D. et al. Quantum harmonic oscillator state synthesis by reservoir engineering. Science 347, 53–56 (2015).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • 25.

    Leghtas, Z. et al. Confining the state of light to a quantum manifold by engineered two-photon loss. Science 347, 853–857 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Lescanne, R. et al. Exponential suppression of bit-flips in a qubit encoded in an oscillator. Nat. Phys. 16, 509–513 (2020).

    CAS 

    Google Scholar
     

  • 27.

    Koch, J. et al. Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007).

    ADS 

    Google Scholar
     

  • 28.

    Reagor, M. et al. A quantum memory with near-millisecond coherence in circuit QED. Phys. Rev. B 94, 014506 (2016).

    ADS 

    Google Scholar
     

  • 29.

    Axline, C. et al. An architecture for integrating planar and 3D cQED devices. Appl. Phys. Lett. 109, 042601 (2016).

    ADS 

    Google Scholar
     

  • 30.

    Chuang, I. L., Leung, D. W. & Yamamoto, Y. Bosonic quantum codes for amplitude damping. Phys. Rev. A 56, 1114–1125 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 31.

    Terhal, B. M., Conrad, J. & Vuillot, C. Towards scalable bosonic quantum error correction. Quant.Sci. Technol. 5, 043001 (2020).

    ADS 

    Google Scholar
     

  • 32.

    Mirrahimi, M. et al. Dynamically protected cat-qubits: a new paradigm for universal quantum computation. New J. Phys. 16, 045014 (2014).

    ADS 

    Google Scholar
     

  • 33.

    Cohen, J., Smith, W. C., Devoret, M. H. & Mirrahimi, M. Degeneracy-preserving quantum nondemolition measurement of parity-type observables for cat qubits. Phys. Rev. Lett. 119, 060503 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Pinotsi, D. & Imamoglu, A. Single photon absorption by a single quantum emitter. Phys. Rev. Lett. 100, 093603 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Macklin, C. et al. A near-quantum-limited Josephson traveling-wave parametric amplifier. Science 350, 307–310 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Schuster, D. I. et al. Resolving photon number states in a superconducting circuit. Nature 445, 515–518 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Vlastakis, B. et al. Deterministically encoding quantum information using 100-photon Schrödinger cat states. Science 342, 607–610 (2013).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • 38.

    Serniak, K. et al. Direct dispersive monitoring of charge parity in offset-charge-sensitive transmons. Phys. Rev. Appl. 12, 014052 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 39.

    Jin, X. Y. et al. Thermal and residual excited-state population in a 3D transmon qubit. Phys. Rev. Lett. 114, 240501 (2015).


    Google Scholar
     

  • 40.

    Grimm, A. et al. Stabilization and operation of a Kerr-cat qubit. Nature 584, 205–209 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Ma, W.-L. et al. Path-independent quantum gates with noisy ancilla. Phys. Rev. Lett. 125, 110503 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Puri, S. et al. Stabilized cat in a driven nonlinear cavity: a fault-tolerant error syndrome detector. Phys. Rev. X 9, 041009 (2019).

    CAS 

    Google Scholar
     

  • 43.

    Douçot, B. & Ioffe, L. B. Physical implementation of protected qubits. Rep. Prog. Phys. 75, 072001 (2012).

    ADS 
    MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Gyenis, A. et al. Experimental realization of an intrinsically error-protected superconducting qubit. Preprint at https://arxiv.org/abs/1910.07542 (2019).

  • 45.

    Brown, B. J., Loss, D., Pachos, J. K., Self, C. N. & Wootton, J. R. Quantum memories at finite temperature. Rev. Mod. Phys. 88, 045005 (2016).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 46.

    Heeres, R. W. et al. Implementing a universal gate set on a logical qubit encoded in an oscillator. Nat. Commun. 8, 94 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Grimsmo, A. L., Combes, J. & Baragiola, B. Q. Quantum computing with rotation-symmetric bosonic codes. Phys. Rev. X 10, 011058 (2020).

    CAS 

    Google Scholar
     

  • 48.

    Leghtas, Z. et al. Hardware-efficient autonomous quantum memory protection. Phys. Rev. Lett. 111, 120501 (2013).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Susskind, L. & Glogower, J. Quantum mechanical phase and time operator. Phys. Phys. Fiz. 1, 49–61 (1964).

    MathSciNet 

    Google Scholar
     

  • 50.

    Michael, M. H. et al. New class of quantum error-correcting codes for a bosonic mode. Phys. Rev. X 6, 031006 (2016).


    Google Scholar
     

  • 51.

    Wang, C. et al. A Schrödinger cat living in two boxes. Science 352, 1087–1091 (2016).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • 52.

    Nigg, S. E. et al. Black-box superconducting circuit quantization. Phys. Rev. Lett. 108, 240502 (2012).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Werschnik, J. & Gross, E. K. U. Quantum optimal control theory. J. Phys. At. Mol. Opt. Phys. 40, R175–R211 (2007).

    ADS 
    MathSciNet 
    CAS 

    Google Scholar
     

  • 54.

    Glaser, S. J. et al. Training Schrödinger’s cat: quantum optimal control. Eur. Phys. J. D 69, 279 (2015).

    ADS 

    Google Scholar
     

  • 55.

    Gollub, C., Kowalewski, M. & de Vivie-Riedle, R. Monotonic convergent optimal control theory with strict limitations on the spectrum of optimized laser fields. Phys. Rev. Lett. 101, 073002 (2008).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Khaneja, N., Reiss, T., Kehlet, C., Schulte-Herbrüggen, T. & Glaser, S. J. Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172, 296–305 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Kirchmair, G. et al. Observation of quantum state collapse and revival due to the single-photon Kerr effect. Nature 495, 205–209 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Sun, L. et al. Tracking photon jumps with repeated quantum non-demolition parity measurements. Nature 511, 444–448 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Cahill, K. E. & Glauber, R. J. Density operators and quasiprobability distributions. Phys. Rev. 177, 1882–1902 (1969).

    ADS 

    Google Scholar
     


  • This is a syndicated post. Read the original post at Source link .