/Quantum k -means algorithm based on trusted server in quantum cloud computing (via Qpute.com)
Quantum k -means algorithm based on trusted server in quantum cloud computing

Quantum k -means algorithm based on trusted server in quantum cloud computing (via Qpute.com)


  • 1.

    Devitt, S.J.: Performing quantum computing experiments in the cloud. Phys. Rev. A 94(3), 032329 (2016)

    ADS
    Article

    Google Scholar

  • 2.

    Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE (1994)

  • 3.

    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of computing, pp. 212–219 (1996)

  • 4.

    Aïmeur, E., Brassard, G., Gambs, S.: Machine learning in a quantum world. In: Conference of the Canadian Society for Computational Studies of Intelligence, pp. 431–442. Springer (2006)

  • 5.

    Anguita, D., Ridella, S., Rivieccio, F., Zunino, R .: Quantum optimization for training support vector machines. Neural Netw. 16(5–6), 763–770 (2003)

    Article

    Google Scholar

  • 6.

    Ruan, Y., Chen, H., Liu, Z., Zhang, J., Zhu, W.: Quantum principal component analysis algorithm. Chin. J. Comput. 37(3), 666–676 (2014)

    Google Scholar

  • 7.

    Homid, A., Abdel-Aty, A.-H., Abdel-Aty, M., Badawi, A., Obada, A.: Efficient realization of quantum search algorithm using quantum annealing processor with dissipation. J. Opt. Soc. Am. B 32, 2025 (2015). https://doi.org/10.1364/JOSAB.32.002025

    ADS
    Article

    Google Scholar

  • 8.

    Rebentrost, P., Mohseni, M., Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, (2014). https://doi.org/10.1103/PhysRevLett.113.130503

    ADS
    Article

    Google Scholar

  • 9.

    Lu, S., Braunstein, S.L.: Quantum decision tree classifier. Quantum Inf. Process. 13(3), 757–770 (2014)

    ADS
    MathSciNet
    Article

    Google Scholar

  • 10.

    Zidan, M., Abdel-Aty, A.-H., El-Sadek, A., Zanaty, E., Abdel-Aty, M.: Low-Cost Autonomous Perceptron Neural Network Inspired by Quantum Computation, vol. 1905, p. 020005 (2017). https://doi.org/10.1063/1.5012145

  • 11.

    Durr, C., Hoyer, P.: A quantum algorithm for finding the minimum (1996). arXiv preprint quant-ph/9607014

  • 12.

    Oyelade, O.J., Oladipupo, O.O., Obagbuwa, I.C.: Application of k means clustering algorithm for prediction of students academic performance. Int. J. Comput. Inf. Secur. 7(1), S39 (2010)

    Google Scholar

  • 13.

    Xing, E.P., Jordan, M.I., Russell, S.J., Ng, A.Y.: Distance metric learning with application to clustering with side-information. In: Advances in Neural Information Processing Systems, pp. 521–528 (2003)

  • 14.

    Liu, M., Zhou, M., Zhang, T., Xiong, N.: Semi-supervised learning quantization algorithm with deep features for motor imagery EEG recognition in smart healthcare application. Appl. Soft Comput. 89, 106071 (2020)

    Article

    Google Scholar

  • 15.

    Aïmeur, E., Brassard, G., Gambs, S.: Quantum speed-up for unsupervised learning. Mach. Learn. 90(2), 261–287 (2013)

    MathSciNet
    Article

    Google Scholar

  • 16.

    Senekane, M., Mafu, M., Taele, B.M.: Privacy-preserving quantum machine learning using differential privacy. In: IEEE AFRICON, pp. 1432–1435 (2017). https://doi.org/10.1109/AFRCON.2017.8095692

  • 17.

    Du, Y., Hsieh, M.-H., Liu, T., Tao, D., Na Liu, N.: Quantum noise protects quantum classifiers against adversaries (2020). ArXiv:2003.09416

  • 18.

    Rohde, P.P., Fitzsimons, J.F., Gilchrist, A.: Quantum walks with encrypted data. Phys. Rev. Lett. 109(15), 150501 (2012)

    ADS
    Article

    Google Scholar

  • 19.

    Liang, M.: Symmetric quantum fully homomorphic encryption with perfect security. Quantum Inf. Process. 12(12), 3675–3687 (2013)

    ADS
    MathSciNet
    Article

    Google Scholar

  • 20.

    Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67(4), 042317 (2003)

    ADS
    Article

    Google Scholar

  • 21.

    Fisher, K.A., Broadbent, A., Shalm, L., Yan, Z., Lavoie, J., Prevedel, R., Jennewein, T., Resch, K.: Quantum computing on encrypted data. Nat. Commun. 5(1), 1–7 (2014)

    Article

    Google Scholar

  • 22.

    Liang, M.: Quantum fully homomorphic encryption scheme based on universal quantum circuit. Quantum Inf. Process. 14(8), 2749–2759 (2015)

    ADS
    MathSciNet
    Article

    Google Scholar

  • 23.

    Liang, M., Yang, L.: Quantum fully homomorphic encryption scheme based on quantum fault-tolerant construction (2015). arXiv preprint arXiv:1503.04061

  • 24.

    Liang, M.: Teleportation-based quantum homomorphic encryption scheme with quasi-compactness and perfect security. Quantum Inf. Process. 19(1), 28 (2020)

    ADS
    MathSciNet
    Article

    Google Scholar

  • 25.

    Abubakar, M., Low, T., Zakaria, N., Younes, A., Abdel-Aty, A.-H.: Reversible circuit synthesis by genetic programming using dynamic gate libraries. Quantum Inf. Process. 16, 160 (2017). https://doi.org/10.1007/s11128-017-1609-8

    ADS
    MathSciNet
    Article
    MATH

    Google Scholar

  • 26.

    Zidan, M., Abdel-Aty, A.-H., Younes, A., Zanaty, E., El-Khayat, I., Abdel-Aty, M.: A novel algorithm based on entanglement measurement for improving speed of quantum algorithms. Appl. Math. Inf. Sci. 12, 265–269 (2018). https://doi.org/10.18576/amis/12012

    MathSciNet
    Article

    Google Scholar

  • 27.

    Zidan, M., Abdel-Aty, A.-H., Nguyen, D., Mohamed, A., Al-Sbou, Y.A., Eleuch, H., Abdel-Aty, M.: A quantum algorithm based on entanglement measure for classifying Boolean multivariate function into novel hidden classes. Res. Phys. 15, 102549 (2019). https://doi.org/10.1016/j.rinp.2019.102549

    Article

    Google Scholar

  • 28.

    Huang, H.L., Zhao, Y.W., Li, T., Li, F.G., Du, Y.T., Fu, X.Q., Zhang, S., Wang, X., Bao, W.S.: Homomorphic encryption experiments on ibm’s cloud quantum computing platform. Front. Phys. 12(1), 120305 (2017)

    ADS
    Article

    Google Scholar

  • 29.

    Sun, X., Wang, T., Sun, Z., Wang, P., Yu, J., Xie, W.: An efficient quantum somewhat homomorphic symmetric searchable encryption. Int. J. Theor. Phys. 56(4), 1335–1345 (2017)

    MathSciNet
    Article

    Google Scholar

  • 30.

    Zhou, Q., Lu, S., Cui, Y., Li, L., Sun, J.: Quantum search on encrypted data based on quantum homomorphic encryption. Sci. Rep. 10(1), 1–11 (2020)

    Article

    Google Scholar

  • 31.

    IBM, Quantum experience (2021). https://www.research.ibm.com/quantum-computing/

  • 32.

    Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. American Association of Physics Teachers (2002)

  • 33.

    Ahuja, A., Kapoor, S.: A quantum algorithm for finding the maximum (1999). arXiv preprint quant-ph/9911082

  • 34.

    Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature (2016). https://doi.org/10.1038/nature23474


  • This is a syndicated post. Read the original post at Source link .