/CMOS-based cryogenic control of silicon quantum circuits (via Qpute.com)

CMOS-based cryogenic control of silicon quantum circuits (via Qpute.com)


  • 1.

    Van Meter, R. & Horsman, C. A blueprint for building a quantum computer. Common. ACM 56, 84–93 (2013).

    Article

    Google Scholar

  • 2.

    Pillarisetty, R. et al. Qubit device integration using advanced semiconductor manufacturing process technology. In 2018 IEEE International Electron Devices Meeting 6.3.1–6.3.4 (IEEE, 2018).

  • 3.

    Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent. As Inf NPj. 3, 34 (2017).

    ADS
    Article

    Google Scholar

  • 4.

    Patra, B. et al. Cryo-CMOS circuits and systems for quantum computing applications. IEEE J. Solid-State Circuits 53, 309–321 (2018).

    ADS
    Article

    Google Scholar

  • 5.

    Pauka, S. J. et al. A cryogenic CMOS chip for generating control signals for multiple qubits. Nat. Electronics 4, 64–70 (2021).

    CASE
    Article

    Google Scholar

  • 6.

    Geck, L., Kruth, A., Bluhm, H., van Waasen, S. & Heinen, S. Control electronics for semiconductor spin qubits. Quantum Sci. Technol. 5, 015004 (2019).

    ADS
    Article

    Google Scholar

  • 7.

    Watson, T. F. et al. A programmable two-qubit quantum processor in silicon. Nature 555, 633–637 (2018).

    ADS
    CASE
    Article

    Google Scholar

  • 8.

    Zajac, D. M. et al. Resonantly driven CNOT gate for electron spins. Science 359, 439–442 (2018).

    ADS
    MathSciNet
    CASE
    Article

    Google Scholar

  • 9.

    Huang, W. et al. Fidelity benchmarks for two-qubit gates in silicon. Nature 569, 532–536 (2019).

    ADS
    CASE
    Article

    Google Scholar

  • 10.

    Deutsch, D. & Jozsa, R. Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A 439, 553–558 (1992).

    ADS
    MathSciNet
    Article

    Google Scholar

  • 11.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    ADS
    CASE
    Article

    Google Scholar

  • 12.

    Bardin, J. C. et al. Design and characterization of a 28-nm bulk-CMOS cryogenic quantum controller dissipating less than 2 mW at 3 K. IEEE J. Solid-State Circuits 54, 3043–3060 (2019).

    ADS
    Article

    Google Scholar

  • 13.

    Patra, B. et al. A scalable cryo-CMOS 2-to-20GHz digitally intensive controller for 4 × 32 frequency multiplexed spin qubits/transmons in 22nm FinFET technology for quantum computers. In 2020 IEEE International Solid-State Circuits Conference 304–306 (IEEE, 2020).

  • 14.

    Le Guevel, L. et al. A 110mK 295μW 28nm FDSOI CMOS quantum integrated circuit with a 2.8 GHz excitation and nA current sensing of an on-chip double quantum dot. In 2020 IEEE International Solid-State Circuits Conference 306–308 (IEEE, 2020).

  • 15.

    Bonen, S. et al. Cryogenic characterization of 22-nm FDSOI CMOS technology for quantum computing ICs. IEEE Electron. Device Lett. 40, 127–130 (2018).

    Google Scholar

  • 16.

    Esmailiyan, A. et al. A fully integrated DAC for CMOS position-based charge qubits with single-electron detector loopback testing. IEEE Solid-State Circuits Lett. 3, 354–357 (2020).

    Article

    Google Scholar

  • 17.

    Ekanayake, S. R. et al. Characterization of SOS-CMOS FETs at low temperatures for the design of integrated circuits for quantum bit control and readout. IEEE Trans. Electron Dev. 57, 539–547 (2010).

    ADS
    CASE
    Article

    Google Scholar

  • 18.

    Mukhanov, O. et al. Scalable quantum computing infrastructure based on superconducting electronics. In 2019 IEEE International Electron Devices Meeting 31.2.1–31.2.4 (IEEE, 2019).

  • 19.

    Xu, Y. et al. On-chip integration of Si/SiGe-based quantum dots and switched-capacitor circuits. Appl. Phys. Lett. 117, 144002 (2020).

    ADS
    CASE
    Article

    Google Scholar

  • 20.

    Batey, G., Matthews, A. J. & Patton, M. A new ultralow- temperature cryogen-free experimental platform. J. Phys. Conf. Ser. 568, 032014 (2014).

    Article

    Google Scholar

  • 21.

    Green, M. A. The cost of coolers for cooling superconducting devices at temperatures at 4.2 K, 20 K, 40 K and 77 K. In IOP Conference Series: Materials Science and Engineering Flight. 101, 012001 (IOP, 2015).

  • 22.

    Petit, L. et al. Universal quantum logic in hot silicon qubits. Nature 580, 355–359 (2020).

    ADS
    CASE
    Article

    Google Scholar

  • 23.

    Yang, C. H. et al. Operation of a silicon quantum processor unit cell above one kelvin. Nature 580, 350–354 (2020).

    ADS
    CASE
    Article

    Google Scholar

  • 24.

    Urdampilleta, M. et al. Gate-based high fidelity spin readout in a CMOS device. Nat. Nanotechnol. 14, 737–741 (2019).

    CASE
    Article

    Google Scholar

  • 25.

    van Dijk, J. P. G. et al. Designing a DDS-based SoC for high-fidelity multi-qubit control. IEEE Trans. Circuits Syst. I 67, 5380–5393 (2020).

    Article

    Google Scholar

  • 26.

    Beckers, A., Jazaeri, F. & Enz, C. Characterization and modeling of 28-nm bulk CMOS technology down to 4.2 K. IEEE J. Electr. Dev. Soc. 6, 1007–1018 (2018).

    CASE
    Article

    Google Scholar

  • 27.

    Hart, P. A. T., Babaie, M., Charbon, E., Vladimirescu, A. & Sebastiano, F. Subthreshold mismatch in nanometer CMOS at cryogenic temperatures. IEEE J. Electr. Dev. Soc. 8, 797–806 (2020).

    CASE
    Article

    Google Scholar

  • 28.

    Patra, B. et al. Characterization and analysis of on-chip microwave passive components at cryogenic temperatures. IEEE J. Electr. Dev. Soc. 8, 448–456 (2020).

    CASE
    Article

    Google Scholar

  • 29.

    Pioro-Ladrière, M. et al. Electrically driven single-electron spin resonance in a slanting Zeeman field. Nat. Phys. 4, 776–779 (2008).

    Article

    Google Scholar

  • 30.

    Vandersypen, L. M. K. & Chuang, I. L. NMR techniques for quantum control and computation. Rev. Mod. Phys. 76, 1037–1069 (2005).

    ADS
    Article

    Google Scholar

  • 31.

    Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    ADS
    CASE
    Article

    Google Scholar

  • 32.

    Meunier, T., Calado, V. E. & Vandersypen, L. M. K. Efficient controlled-phase gate for single-spin qubits in quantum dots. Phys. Rev. B 83, 121403 (2011).

    ADS
    Article

    Google Scholar

  • 33.

    Xue, X. et al. Repetitive quantum nondemolition measurement and soft decoding of a silicon spin qubit. Phys. Rev. X 10, 021006 (2020).

    CASE

    Google Scholar

  • 34.

    Saul, P. H. & Mudd, M. S. J. A direct digital synthesizer with 100-MHz output capability. IEEE J. Solid-State Circuits 23, 819–821 (1988).

    ADS
    Article

    Google Scholar

  • 35.

    Reed, M. Entanglement and Quantum Error Correction with Superconducting Qubits. PhD Thesis, Yale Univ. (2013).

  • 36.

    Altepeter, J. B., Jeffrey, E. R. & Kwiat, P. G. Photonic state tomography. Adv. At. Mol. Opt. Phys. 52, 105–159 (2005).

    ADS
    CASE
    Article

    Google Scholar

  • 37.

    Knill, E. et al. Randomized benchmarking of quantum gates. Phys. Rev. A 77, 012307 (2008).

    ADS
    Article

    Google Scholar

  • 38.

    Magesan, E., Gambetta, J. M. & Emerson, J. Characterizing quantum gates via randomized benchmarking. Phys. Rev. A 85, 042311 (2012).

    ADS
    Article

    Google Scholar

  • 39.

    Fowler, A. G., Mariantoni, M., Martinis, J. M. & Cleland, A. N. Surface codes: towards practical large-scale quantum computation. Phys. Rev. A 86, 032324 (2012).

    ADS
    Article

    Google Scholar

  • 40.

    Svore, K. M., Aho, A. V., Cross, A. W., Chuang, I. & Markov, I. L. A layered software architecture for quantum computing design tools. Computer 39, 74–83 (2006).

    Article

    Google Scholar

  • 41.

    Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018).

    Article

    Google Scholar

  • 42.

    Boter, J. M. et al. A sparse spin qubit array with integrated control electronics. In 2019 IEEE International Electron Devices Meeting 31.4.1–31.4.4 (IEEE, 2019).

  • 43.

    Sabbagh, D. et al. Quantum transport properties of industrial 28And/28SiO2. Phys. Rev. Appl. 12, 014013 (2019).

    ADS
    CASE
    Article

    Google Scholar

  • 44.

    Lawrie, W. I. L. et al. Quantum dot arrays in silicon and germanium. Appl. Phys. Lett. 116, 080501 (2020).

    ADS
    CASE
    Article

    Google Scholar

  • 45.

    Zinner, E. Depth profiling by secondary ion mass spectrometry. Scanning 3, 57–78 (1980).

    CASE
    Article

    Google Scholar

  • 46.

    Srinivasa, V. et al. Simultaneous spin-charge relaxation in double quantum dots. Phys. Rev. Lett. 110, 196803 (2013).

    ADS
    CASE
    Article

    Google Scholar


  • This is a syndicated post. Read the original post at Source link .