/New era for quantum computing possible thanks to warped crystals: USask research – News (via Qpute.com)
${vImageAlt}

New era for quantum computing possible thanks to warped crystals: USask research – News (via Qpute.com)


The technology behind revolutionary advances such as quantum computing is only made possible by new types of materials that perfectly conduct or insulate electrical currents without the kind of conventional power transmission faults that occasionally see lights dim in homes, for instance.

The discovery of these quantum materials was the subject of the 2016 Nobel Prize in Physics.

Now, University of Saskatchewan (USask) mathematician Dr. Steven Rayan (PhD) and University of Alberta physicist Dr. Joseph Maciejko (PhD) have developed a whole new theory of quantum material, based on a non-standard geometry called hyperbolic geometry.

Their work points to the possibility of developing a larger class of quantum materials than previously known, opening the door to developing components for wider technological applications and advancements.

The highly technical paper explaining their exciting discovery is titled Hyperbolic band theory, and was just published in the high-impact, prestigious journal Science Advances.

Rayan is an associate professor in mathematics and statistics, and the director of USask’s Centre for Quantum Topology and its Applications (quanTA). Maciejko is an associate professor in physics at U of A and director of the Theoretical Physics Institute.

“When you switch to this warped geometry, you discover conductivity behaviours that are not possible in the prior class of quantum materials that are based on an ordinary crystal structure,” said Rayan.

“Our paper gives scientists who are exploring quantum materials and quantum circuits something new to look for,” said Rayan.

“Our paper is really a challenge to the science community: can we physically engineer and bring to life this new class of hyperbolic quantum material, and can we apply them in creative ways to emerging technologies such as quantum computers?”

Quantum materials require very stringent conditions, such as super-cool temperatures, to enable their special behaviour. While currently known quantum materials have a simple crystal-like geometry, Rayan and Maciejko want to find other materials with a warped crystal structure that exhibit fault-tolerant conductive behaviour at slightly higher temperatures in an environment where a single-degree difference is a game changer.




This is a syndicated post. Read the original post at Source link .